Feature Selection as a Preprocessing Step for Hierarchical Clustering

نویسنده

  • Luis Talavera
چکیده

Although feature selection is a central problem in inductive learning as suggested by the growing amount of research in this area, most of the work has been carried out under the supervised learning paradigm, paying little attention to unsupervised learning tasks and, particularly, clustering tasks. In this paper , we analyze the particular beneets that feature selection may provide in hierarchical clustering tasks and explore the power of feature selection methods applied as a prepro-cessing step under the proposed dimensions. Instead of only predicting class labels, the focus is on a more general inference tasks over all the features. Empirical results suggest that feature selection as preprocessing only provides limited improvements in the performance task. In addition, they raise the problem of the notion of irrelevance in unsuper-vised settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Efficient Construction of Comprehensible Hierarchical Clusterings

Clustering is an important data mining task which helps in nding useful patterns to summarize the data. In the KDD context, data mining is often used for description purposes rather than for prediction. However, it turns out diicult to nd clustering systems that help to ease the interpretation task to the user in both, statistics and Machine Learning elds. In this paper we present Isaac, a hier...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999